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SPECIFIC FEATURES OF HYDRODYNAMICS AND 
HEAT TRANSFER IN A FREE-CONVECTIVE NEAR- 
WALL JET 

V. N. Korovkin and A. P. Andrievskii UDC 536.25 

Results of numerical simulation of the development of a laminar free-convective jet along an adiabatic 

surface are presented. Specific features of the velocity and temperature fields as functions of the Prandtl 

number are studied. Detailed tables of numerical solutions are given. 

Introduction. Interest in the study of free-convective flows above point heat sources has again come into 

existence recently. This is explained by the fact that many engineering problems associated with convective cooling 

of electronic circuits and of certain industrial equipment can be successfully solved by the method of superposition 

[1, 2]. It was found that this approach was as accurate as complex computational schemes and was a valuable 

supplement to the latter when solving application problems. Since the main idea on which the method of 

superposition is based is the application of calculation results or dimensionless relations to simple boundary 

conditions, there arises a need for more detailed studies of free-convective heat transfer above point and linear 
heat sources. 

In what follows we present the results of a comprehensive numerical investigation of hydrodynamics and 

heat transfer in a flat near-wall free-convective jet based on a model of a laminar boundary layer in a Boussinesque 
approximation at different Prandtl numbers (0.1 _< Pr < 10). 

Basic Equations. We consider the regime of a stationary laminar fluid flow from a linear heat source 
imbedded in the leading edge of a vertical semi-infinite adiabatic plate. The physical properties of the fluid (except 

density) are assumed to be temperature-independent. Then, the basic equations describing a jet vertical flow are 
presented in the form: 

O__~u Ov 
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u - - +  v - - = v - - ~  + ~ ( r -  r ~ ) ,  
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The boundary conditions for this problem are: 

OT 
y = O :  v = u -  - 0 ,  y ~ o o :  u - ' O ,  T- 'Too .  (2) 

Oy 

Moreover, the solution of (1)-(2) should also satisfy the condition of conservation of the quantity Q0 

Qo = cp ~ pu (T - Too ) dy = const (3) 
o 

in any plane x = const above the heat source. 

We introduce the following transformations: 
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TABLE 1. Comparison of f (0, Pr) Values 
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TABLE 2. Comparison of h(0, Pr) Values 
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TABLE 3. Comparison of Values of/max and ~7 (/'max) 

[3 ] Present work 
Pr 
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Then we have instead of (1) 

~7 = 

0.63805 

w 

Oo I 4/5 = . . h (7) x - 3 / 5  
(~)~ ~ 4 p e p  

0.801 
I 

i 
2 , ,  (4) 

It follows from (2)-(3) that 

f + ff-  1 2 1 + f ' h  0.  (5) - ~ /  + h = 0 , - - ~ h ' +  / h '  = 

/ (o )=o ,  / (o)=o, / (~)=o;  h (0)=0, h (~)=0;  . / h a , ~ = l .  (6) 
0 

Though, using self-similar variables, we succeeded in substantial simplification of the initial problem (1)- 
(3) (the system of partial differential equations is reduced to a system of ordinary differential equations), analytical 
relations (5)-(6), both exact and approximate, have not been constructed as yet. Therefore, all calculations of 

free-convective jet heat transfer are performed numerically within the framework of different schemes [3-6 ]. 
Results of Calculations. The nonlinear two-point boundary-value problem (5)-(6) was solved by the stand- 

ard Runge-Kut ta  method by reducing it to a Cauchy problem. The missing initial conditions were determined by 

the shooting technique for a number of values of rl** (r/| is numerical approximation of a mathematical point r/= 
oo) in order to find its independence on r/~. Moreover, information about the behavior of the characteristics of a 

jet flow at Pr = 10 was obtained by numerical integration of the modified system of equations 
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TABLE 4. f (0, Pr), h(0, Pr),/max and )7(/max) as a Functions of Pr 

Pr f (O,  Pr) h(0, Pr) /max )70f'max) 

0.2924 0.852182 0.489783 0.75155 1.869 

0.2926 0.852300 0.489921 0.75155 1.868 

0.2928 0.852419 0.490059 0.75155 1.868 

0.2930 0.852537 0.490198 0.75155 1.868 

0.2932 0.852656 0.490336 0.75155 1.867 

0.2934 0.852774 0.490474 0.75155 1.867 

'" 1 ( " 1 ) +hi=O, h;+.~(fth,)'=O . 3  (7) I i  + ~ l~fl  - . , l l  '2 

Similarly, at Pr =. O.I an analysis was made by the system 

3 /  �9 1 ,2 3 
P r / 2 "  + ~ 7f2 - 3 12 + h2 = 0 ,  h ;  + ~ 0e2h2)  ' - -  0 .  (8) 

This was due to the fact that at large (or small) Prandtl  numbers the quantities 6u and ~7" substantially differ from 

each other. The latter leads to a loss of accuracy of numerical solutions found within the framework of (5)-(6). 

The use of transformations 

= , = , = pr  2/5 f()7) P r - 3 / S f l  ()71) h ()7) pr3/5 hi ()71) ql )7 ; 

, , = pr 3/5 I()7) = p r - 2 / 5 / 2  (r/2) h ()7) = Pr 2/5 h 2 ()72) )72 )7 

(9 )  

eliminates this drawback. Then, the numerical algorithm for obtaining the unknown functions was tested on the 
self-similar problem of a free-convective flow above a linear heat source that has both exact analytical solutions 
and extensive numerical data [7 ]. 

Tables 1-3 give information about the basic hydrodynamic 

2 3 
~ :  " : 3 / 5  ~ ( 2 o  x 

2 - f (0) o r  x ' G r x =  3 
pv pCpv 

and thermal 

(T w - Too )/aCp = h (0) G r / / 5  
(20 x 

characteristics of a jet flow developing along an adiabatic surfa,.e. It is seen that velocity profiles 

U X  ' 2 / 5  
- -  = f 07) Grx 

similar to a semibounded forced jet, possess a maximum at some distance from the plate. But in a free-convective 

jet u depends on AT. "Competition" between the velocity and temperature fields leads to a nonmonotonic depend- 

ence of/max on Pr: calculation data show that this quantity increases up to a certain Prandtl  number and then 
decreases. Therefore,  additional investigations were conducted to determine the threshold value Pr,.  It was found 

that it lies within the limit 0.2924 < Pr, < 0.2934 (Table 4). A more accurate calculation of Pr,  is difficult, since 

the global extremum of the function f (q, Pr) turns to be rather mildly sloping. As for the temperature distribution 
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in the flow cross-sections, it has an ordinary form with a maximum at ~7 = 0 and an asymptotic decrease for 
r/-- oo. As Pr grows, profiles h(r/) become more steep and approach a rectilinear form. 

In conclusion, the authors hope that the results presented in this paper will allow one to more deeply 
comprehend the laws governing stationary free-convective heat transfer in jet flows and also offer new information 
for engineering calculations. 

N O T A T I O N  

u, v, longitudinal and transverse velocity components; x, y, longitudinal and transverse coordinates; T, 
temperature; Tw, Too, temperatures of wall and surrounding; v, kinematic viscosity; Pr, Prandtl number; p, density; 
Cp, heat capacity at constant pressure; AT ffi T -  Too, excess temperature; fl, coefficient of volumetric heat 
expansion; Ju, JT, thickness of dynamic and thermal boundary layers; Grx, local Grashof number. 
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